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The COVID-19 modeling team at the University of Iowa has taken a multi-disciplinary, multi-
model approach to estimating the progression of the COVID-19 outbreak in the State of Iowa. 
Rather than be limited by a single modeling approach, utilizing different models can allow us to 
ask different nuanced questions, which will give us a more comprehensive understanding of the 
outbreak and allow for more effective forecasting of the impact of interventions on the outbreak. 
We are concurrently developing and evaluating three modeling paradigms which can each be 
used to accomplish separate but complementary goals.  The three different approaches and 
their goals are as follows. 

(M1) A short-term prediction model with few modeling assumptions designed to make 
accurate one-week ahead forecasts.  This model additionally serves to evaluate 
the plausibility of longer-term predictions based on the current short-term 
trajectory of the COVID-19 outbreak. 

(M2) A medium-term prediction model providing the potential range of the outbreak, 
yielding estimates of disease characteristics and important prediction bounds for 
the ongoing outbreak in Iowa. The disease characteristics included in the model 
are latent and infectious periods of COVID-19 as well as mortality rate. 

(M3) A model designed to evaluate various policy changes related to nonpharmaceutical 
interventions such as increasing or relaxing social distancing measures or 
implementing universal face shields. This model will be able to provide 
projections of how we expect the disease to spread if social distancing measures 
are implemented at various points in time.  



   
 

   
 

Taken together, these approaches should allow the team to understand the current and 
immediate state of the COVID-19 outbreak in Iowa, quantify the size and scope of the outbreak 
in the coming months, and characterize how various actions may affect the trajectory of the 
outbreak. All results presented here are based on publicly available state-level data using 
models developed by the team. The team has not yet had sufficient time to develop extensions 
using the supplied IDPH data.  

Conclusions: We have found evidence of a slowdown in infection and mortality rates due to 
social distancing policies, but not that a peak has been reached. The current data does not 
support a conclusion that the reproductive number has been brought below 1. There is 
considerable uncertainty still in how many cases and deaths Iowa could eventually have, with 
possible projections between 150 and >10,000 total deaths. Therefore, prevention measures 
should remain in place. Without such measures being continued, a second wave of infections is 
likely. 

 

Model 1: Short term forecasts and trajectory assessments 

Overview. This model projects the longer-term outbreak epidemiology (e.g., out to 6 months) by 
estimating the most-likely outbreak trajectory in the short-term (e.g., 3-14 days) and comparing 
trajectories over the near-term period. This approach uses only location-specific data (e.g., from 
Iowa) to estimate the short-term trajectory. Thus, it aims to avoid possible misspecification or 
conforming to the trajectories observed in other states or locations that have characteristics or 
social distancing policies different from Iowa. Note that the validity of short-term forecasts is 
continuously evaluated by comparing forecasting performance against a similar model applied 
to different locations or time periods; this allows the model to avoid “over-fitting” the limited 
amount of information that is currently available in Iowa. Model fitting is also performed 
dynamically so that changes in an outbreak may be detected and more quickly integrated into 
the projections. 

The methodological approach can be described in three parts.  

• First, a relatively simple short-term model is built to forecast the outbreak trajectory over 
the next 3-14 days, depending on the optimal state-specific lag between input and 
outcome measures. In the example below, the short-term model leverages the 
relationship between the lagged number of positive cases and the cumulative mortality 
rate. (Note: this approach can be extended to other outcomes.)  

• Second, “feasibility bounds” around these short-term projections are constructed by 
evaluating “out-of-sample” performance, which is derived by comparing many different 
prior short-term forecasts to the observed values in different locations and time periods.  

• Third, long-term trajectories are estimated by evaluating those that best conform to out-
of-sample performance. For example, a long-term trajectory may be deemed “too 
extreme” if it represents a deviation from the short-term forecast that exceeds 95% of all 
out-of-sample estimates. This third step can be done using external long-term models 
(e.g., IHME model) or by fitting various models through the plausible points contained in 
the short-term feasibility bounds described in step 2. 

Preliminary Findings. We have evaluated this model in two ways. First, we compared this 
approach to updated projections of the IHME model since it was unveiled on March 25th. This 
short-term fitting approach does a good job of anticipating revisions in the IHME projections, by 



   
 

   
 

identifying state forecasts that appear to be over or underestimating the short-term trajectory in 
the coming days. Second, we applied this model to the most recent counts in the state of Iowa 
and constructed various long-term trajectories through different feasibility bounds, using the 
basic “curve-fitting” approach in the IHME model. Figure 1 depicts short-term forecast feasibility 
bounds for cumulative mortality in the coming week based on out-of-sample performance using 
the previous two weeks of forecast estimates in the states of IA, MN, WI, NE, SD, MO and IL. 
The feasibility bounds correspond to 50%, 80% and 90% of the out-of-sample prediction errors 
(e.g., 50% of the out-of-sample forecasts errors would suggest a true value within the 50% 
percent feasibility bound.)   

 

Figure 2, below, depicts five possible trajectories using the short-term forecast bounds depicted 
above for the next 7 days. These trajectories represent plausible trajectories within the 95% 
prediction interval (based on out-of-sample performance) that are also consistent with the most 
recently observed data.  This figure also depicts the corresponding peak dates (for peak daily 
mortality) and total mortality by July 1st that corresponds to these points.  

 

These figures demonstrate that a wide range of plausible trajectories still exist for the state of 
Iowa, ranging from 151 deaths (peaking on April 18th) to 965 deaths (peaking on May 8th). 
However, given the continued increased in positive cases, hospitalizations, ICU admissions and 
patients on ventilators, it is our opinion that Scenarios 1 and 2 are far less likely. Note that 



   
 

   
 

Scenarios 1 and 2 represent peak mortality occurring this past Saturday or this coming 
Wednesday; these represent peaks occurring earlier than most existing forecast estimates for 
the state of Iowa.  However, it is important to note that the long-term trajectories plotted in 
Figure 2 assume the parametric shape and underlying social distancing assumptions of 
the IHME model, and this short-term model fitting approach should only be used to 
assess the short-term plausibility of a given trajectory and not to generate long-term 
forecasts. 

 

Model 2: Long term forecasts and disease characteristics 

Overview. M2 takes a population-level approach to the spread of COVID-19 in Iowa, focusing 
on the reported mortality as a reliable, though lagged indicator of epidemic spread. This model 
is designed to synthesize available information about the latent and infectious periods of the 
COVID-19 infection, as well as existing public health interventions in the United States and 
abroad. With these tools, we evaluate the preliminary projections available by considering Iowa-
only mortality, and also describe a range of plausible future projections assuming that the 
patterns observed elsewhere are applicable to the situation in Iowa.  

Uncertainty remains about the mortality rate of COVID-19, and the best information indicates 
that it is heterogeneous by age, among other factors. Nevertheless, reported COVID-19 
mortality may provide a useful perspective on the epidemic more broadly. This model posits that 
the true mortality rate is around 2%, but allows the estimate to be updated based on available 
data. This prior mean is consistent with Lai et. al. (2020), but may be conservative (Baud et. Al., 
2020). M2 is a stochastic SEIR model, tracking population counts in the Susceptible, Exposed, 
Infectious, and Removed disease states. The latent period, during which individuals in the 
Exposed (E) category are infected but not yet actively transmitting the pathogen, was assumed 
to last between 2 and 14 days (95% probability), with typical values around 5 days (Lauer et. al., 
2020). Much less is known about the infectious (I) period, which was assumed to last between 
10 and 32 days (95% probability), with typical values around 14 days, based reports about 
recovery times.  

Preliminary Findings. Regions affected by COVID-19 vary widely with respect to both the 
baseline transmission intensity, as well as the degree/type of community and policy response to 
the epidemic. We therefore consider two approaches to understanding the current situation and 
expected trajectory in the state of Iowa. First, we consider models of the trajectory of mortality in 
Iowa under varying assumptions and compare these trajectory results to comparable fits in 
other states and countries further along in the outbreak. This comparison gives rise to the 
results presented in Figure 3, in which we see substantial variability in the Basic Reproductive 
Number (R0) by location. We estimate R0 for each location using the Empirically Adjusted R0 
(EA-RN) calculated prior to the start of public health interventions. The EA-RN captures the 
expected number of secondary infections caused by each infectious individual in a specific 
context, sharing many of the same features as the commonly cited “Effective Reproductive 
Number”.   



   
 

   
 

 
Figure 3. Estimated Empirically Adjusted Reproductive Numbers in selected regions, comparing the unmitigated 

epidemic intensity. Iowa is included here twice, once with interventions starting on 3/17/2020, and again with 
interventions assumed to begin on 4/4/2020. As expected, choices of intervention start time did not affect the 

estimated baseline (pre-intervention) epidemic intensity.  

Building models purely on reported Iowa mortality data, we find that predictions are highly 
sensitive to assumptions about when contact behavior (social distancing) became widespread in 
the state, especially for longer term forecasts. In Figure 4, we illustrate the mortality curve of a 
model assuming that contact behavior began to shift on March 17th, when a Public Health 
Disaster Emergency was declared in the state. Here, we present the quantiles of fitted/projected 
cumulative mortality curves to show the range of likely/possible futures under this assumption. 
By May 28th, this model predicts a median mortality of 747 with a 95% interval between 156 and 
9,734, reflecting a huge degree of uncertainty in trajectory and magnitude. This uncertainty is 
further shown by considering the model in Figure 5, where we modify the assumed date of 
behavior change to April 4th, at which point formal measures to close educational institutions 
were taken, and individuals and businesses had benefitted from more time to respond to 
changing circumstances. Despite being fit to the same data, this shift in the date on which 
contact behavior was allowed to change produced dramatic modifications to the six-week 
mortality prediction. The model estimated a median cumulative mortality of 1,369 on May 28th, 
with a 95% interval between 315 and 28,599. These projections will become more precise as 
more fatalities are observed, and hypothetical epidemics with incompatible shapes are 
discarded. In Figure 6, we present the Empirically Adjusted Reproductive Number curve for the 
March 17th intervention model. This measure is designed to capture the number of secondary 
infections per infectious individual observed in a particular population, and is related to the 
common “effective reproductive number”, more flexibly capturing the change over time. As 
illustrated in the figure, we do not see strong evidence that the reproductive number has been 
brought below one. These initial results communicate several important points: 

1. We see preliminary evidence for the impact of current imposed and adopted social 
distancing and contact mitigation efforts in Iowa, with cumulative mortality increasing 
more slowly than would be expected without such mitigations, and the reproductive 
number dropping over time. 



   
 

   
 

2. We observe a huge range of possible outcomes, from relatively low fatalities to 
catastrophic loss of life. These models assume that the current measures taken to limit 
contact in Iowa remain in place, so while we see evidence that the epidemic intensity 
has decreased from the initial period of uncontrolled spread, there is not sufficient 
evidence in this data set alone to conclude that current measures will necessarily be 
sufficient to prevent a return to higher rates of transmission and corresponding mortality.    

  
Figure 4: Projected cumulative 2-week mortality in Iowa using only Iowa specific data, and assuming that a shift in contact 

behavior occurred on March 17th.  

  
Figure 5: Projected cumulative 2-week mortality in Iowa using only Iowa specific data, and assuming that a shift in contact 

occurred on April 4th. 



   
 

   
 

 

Figure 6: Estimated Empirically Adjusted Reproductive Number curve, based on the March 17th Iowa only intervention model. 
Only when this value drops below one do we expect the epidemic growth to be sub-exponential. While it’s clear that the 

reproductive number has dropped over time, we do not have evidence that it has fallen below one, or that it is expected to 
unambiguously do so in the immediate future.  

In order to improve the precision of our forecasts, we can introduce assumptions about how the 
intervention in Iowa relates to that implemented in other locations. This approach allows us to 
borrow information about how the spread of COVID-19 has been fought in other places, without 
requiring that we assume the entire disease course in Iowa will be similar. Nevertheless, every 
state and nation can reasonably be expected to show different transmission dynamics, and the 
formal and informal responses to COVID-19 have certainly been highly varied in type, timing, 
implementation, and adoption. Thus, this approach is better suited for describing a range (from 
optimistic to pessimistic) of possible futures than for adopting a specific best prediction, unless 
strong evidence is presented to justify the substantial similarity between the responses of the 
locations under study. Table 1 presents this range of scenarios, varying by which state is used 
to inform prior knowledge of intervention efficacy, and which date is deemed most comparable 
to the intervention in that state. Figures range from extremely optimistic to moderate, and are 
compared to the results from the Iowa-only models given above. 

  

Table 1: Expected Mortality Scenarios by 5/28 (NOT Total Mortality) 

Intervention Magnitude 
Intervention 
Estimated From:  

Iowa Intervention 
Beginning On: 

Median Mortality by 5-28 
(95% Cr-I) 

Extremely Optimistic New York 3/17/2020 107 (67-296) 
Extremely Optimistic New York 4/4/2020 334 (169-632) 
Optimistic Washington 3/17/2020 341 (133-1955) 
Optimistic Washington 4/4/2020 492 (240-1997) 
Moderate Minnesota 3/17/2020 560 (115-6219) 
Moderate Minnesota 4/4/2020 871 (200-10008) 
Iowa Only Iowa 3/17/2020 747 (156-9734) 
Iowa Only Iowa 4/4/2020 1369 (315-28599) 

 



   
 

   
 

Overall, the results of M2 support evidence of “curve flattening”, but do not definitively indicate 
that this will be quickly followed by the containment of virus spread. While improved and 
ongoing mitigation is indicated as a plausible outcome, M2 also identifies risks of 
returning to a mode of increasingly rapid spread. These results indicate that great caution is 
needed at this early stage before loosening of potentially insufficient containment measures is 
considered.  

Next Steps.  M2 is a population-level model, and as such it misses important heterogeneity in 
state populations. Extensions of this work should apply more granular data to better understand 
the distribution of COVID-19 cases in Iowa. In addition, in the next few weeks as more 
information about the mortality curve in Iowa becomes available, estimates for the peak time 
and final size of the epidemic based on M2 are expected to become more accurate, and the 
length at which forecasts will be meaningfully precise will increase. M2 is also able to 
accommodate a hypothetical relaxing of interventions, if expressed in relative terms (e.g., 
statements like “reducing intervention intensity to 85% of current levels”), or to similarly infer the 
likely effect of such policies if adopted first elsewhere.  

 

Model 3: Evaluating polices 

Overview. M3 is designed to describe disease transmission dynamics over a large contact 
network corresponding to the 3.155M residents of Iowa. By explicitly modeling how individuals 
contact one another, contact based interventions or the relaxing thereof can be tested virtually 
to understand how we might expect such interventions to affect the disease trajectory.  While 
this model may be used to construct long-term predictions, its primary function is to understand 
how the disease curve can be manipulated by public policy decisions. 

This model leverages information collected in prior studies (Kwok et al., 2018; Zhaoyang et al., 
2018) to accurately reflect the human-to-human contact patterns. It computes the expected 
number of infectious individuals at any given date due to disease transmission through these 
contacts.  The effects of increasing or decreasing social distancing can be implemented directly 
in a time-varying and individual-specific manner.  Additionally, time-varying infective-susceptible 
transmission probabilities can be modeled explicitly, thereby allowing the estimation of the effect 
of, e.g., universal face shields on the disease curve. 

Preliminary findings.  An early utilization of M3 can shed light on several critical areas.  First, 
we show that barring additional interventions such as contact tracing, we expect that reopening 
society to its pre-COVID-19 status anytime in the next four months will lead to a second wave of 
infections that will necessitate reimplementing our current social distancing policies.  These 
estimates were based on an adaptive strategy of reopening society if the number of daily cases 
(both reported and unreported) fell below a threshold of 150, 100, 50, or 10, and reinstating our 
current level of social distancing if we observed 7 contiguous days of increasing number of daily 
cases. Figure 7 shows these results by plotting the expected number of daily cases according to 
the various thresholds.  In all cases, a second peak emerges necessitating the reinstatement of 
social distancing policies. 



   
 

   
 

 
Figure 7. Expected number of daily COVID-19 cases over time with an adaptive strategy for reopening society.  

Social distancing will be relaxed if the number of daily cases drops below 150 (pink), 100 (purple), 50 (red), or 10 
(orange) cases, and reinstated if 7 consecutive days of increasing daily case counts occurs.  The black curve 

provides a baseline which maintains the current level of social distancing indefinitely. 
 

We have also used M3 to evaluate the efficacy of universal PPE, such as face shields.  To 
illustrate this approach, we evaluated universal PPE in terms of reduction in the probability that 
an infective-susceptible contact would lead to a transmission event.  Figure 8 shows these 
results using the adaptive scheme described above with a threshold of 100 daily cases to 
reopen, where the universal PPE has been implemented starting on May 1, 2020.  From this 
figure we see that even with low efficacy, the current peak drops considerably more rapidly than 
our current trajectory.  However, reopening society is still highly likely to lead to a second peak 
unless the PPE efficacy is strong (at least 80% reduction in transmission probability). 



   
 

   
 

 
Figure 8. Expected number of daily cases due to varying levels of efficacy for universal PPE implemented on     

May 1st as an illustration.  Efficacy is measured in terms of reduction in the probability of a susceptible-infective 
contact leading to a new transmission.  The adaptive strategy for reopening and reimplementing shows that only 
with high efficacy rates does a second peak (and subsequent reinstatement of social distancing) fail to emerge. 

 

Finally, we used M3 to evaluate the effect of opening society for all but those individuals with the 
highest contact rates.  Figure 9 shows how reopening society based on contact rates works 
conjointly with PPE effectiveness.  This figure shows that if we can maintain the current 
quarantining levels for those with the 20% highest contact rates through, e.g., limiting large 
social events, we can greatly diminish the impact of the second wave, and a lower level of PPE 
efficacy is required to eliminate the second wave entirely (50% reduction in transmission 
probability). 

 



   
 

   
 

 
Figure 9. Expected number of daily cases due to varying levels of efficacy for universal PPE implemented on    

May 1st as an illustration.  Efficacy is measured in terms of reduction in the probability of a susceptible-infective 
contact leading to a new transmission.  The adaptive strategy used here maintains quarantining at the current level 

for those with the highest number of contacts while reopening society for the rest.  Pairing this with medium 
efficacy universal PPE, a second peak (and subsequent reinstatement of social distancing) may not emerge. 

 

Future directions.  The current model is limited in that the model is being trained on the true 
number of cases which can only be estimated.  The preliminary results presented here are 
based on publicly available data alongside current estimates of unreported cases in the United 
States (Jagodnik et al., 2020).  The data received by IDPH this past week will allow us to better 
estimate the true number of cases, thereby increasing the accuracy of our assessments and 
forecasts. 

In addition, we are developing a web-based tool for IDPH and other interested parties to use in 
order to evaluate specific changes in social distancing practices and universal PPE use.  We will 
notify IDPH as this tool becomes available for use. 
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